<u>Topic 14b – Group 7, the Halogens</u> <u>Revision Notes</u>

1) <u>Trends in physical properties of the elements</u>

- At room temperature, Cl₂ is a pale green gas, Br₂ is a brown liquid, I₂ is a blue-black solid.
- In Group 7, boiling point increases down the group because the molecules have more electrons and, therefore, stronger van der Waal's forces which require more energy to overcome them
- Electronegativity is the ability of an atom to attract the electrons in a covalent bond
- Down Group 7, the shared electrons are further from the nucleus and more shielded. There is a weaker attraction for the bonding electrons down the Group

2) <u>Trends in chemical properties of the elements</u>

- The Group 7 elements are oxidising agents which gain an electron when they react
- The ability to oxidise decreases down Group 7
- This can be shown by halogen displacement reactions where elements higher up the group will displace elements further down the group
- This can be done with chlorine dissolved in water or by bubbling chlorine gas through NaBr(aq) or NaI(aq)

 $Cl_2 + 2NaBr \rightarrow 2NaCl + Br_2$ Pale green solution Yellow solution/orange in hexane

 $Cl_2 + 2Nal \rightarrow 2NaCl + l_2$ Pale green solution Brown solution/purple in hexane

 $Br_2 + 2NaI \rightarrow 2NaBr + I_2$ Orange solution Brown solution/purple in hexane

• These equations can also be written in ionic form

 $CI_2 + 2Br^- \rightarrow 2CI^- + Br_2$ $CI_2 + 2I^- \rightarrow 2CI^- + I_2$

 $Br_2 + 2I^- \rightarrow 2Br^- + I_2$

• Down the group the outer electron is further from nucleus and more shielded so gained less easily

3) <u>Trends in properties of the halides</u>

- The halides (chlorides, bromides and iodides) are reducing agents which lose an electron when they react
- The ability to act as a reducing agent increases down the Group
- Down the group the outer electron is further from nucleus and more shielded so lost more easily
- This can be shown by the reactions of the solid halides with concentrated sulphuric acid

Sodium halide	Observations	Products	Type of reaction
NaF	Steamy fumes	HF(g)	Acid-base (F ⁻ acting as base)
NaCl	Steamy fumes	HCI(g)	Acid-base (Cl ⁻ acting as base)
NaBr	Steamy fumes Colourless gas Brown fumes	HBr(g) SO ₂ Br ₂	Acid-base (Br ⁻ acting as base) Redox (reduction product of H ₂ SO ₄) Redox (oxidation product of Br ⁻)
Nal	Steamy fumes Colourless gas Yellow solid Smell of bad eggs Black solid/purple fumes	HI(g) SO ₂ S H ₂ S I ₂ (s/g)	Acid-base (I ⁻ acting as base) Redox (reduction product of H ₂ SO ₄) Redox (reduction product of H ₂ SO ₄) Redox (reduction product of H ₂ SO ₄) Redox (oxidation product of I ⁻)

- Iodide ions, I⁻, can reduce the S from oxidation state +6 in H_2SO_4 to +4 in SO_2 then to 0 in S and finally to -2 in H_2S
- Bromide ions, Br⁻, can reduce the S from oxidation state +6 in H₂SO₄ to +4 in SO₂
- Fluoride and chloride cannot reduce the S in H_2SO_4 under these conditions

4) <u>Reactions of CI⁻, Br⁻ and I⁻ with Silver Ions and Ammonia Solution</u>

• Chloride ions, bromide ions and iodide ions produce coloured precipitates with acidified silver nitrate solution. Fluoride ions do not produce a precipitate with AgNO₃

 $Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$ White precipitate

Ag⁺(aq) + Br⁻(aq) → AgBr(s) Cream precipitate

 $Ag^+(aq) + I^-(aq) \rightarrow AgI(s)$ Yellow precipitate

AgCl(s) dissolves in dilute ammonia solution, NH₃(aq)

- AgBr(s) dissolves in concentrated ammonia solution but not in dilute ammonia.
- Agl(s) does not dissolve, even in concentrated ammonia solution

5) <u>Redox Reactions of Group 7 Elements</u>

• Chlorine undergoes a redox reaction with water. This reaction is used in water purification to kill bacteria

$$CI_2(g) + H_2O(I)$$
 HCI(aq) + HOCI(aq)

• The benefits to health of water treatment outweigh the risks associated with handling toxic chlorine gas

• Chlorine reacts with cold, dilute sodium hydroxide solution. This reaction is used to make household bleach

```
CI_2(g) + 2NaOH(aq) \rightarrow NaCI(aq) + NaCIO(aq) + H_2O(I)
```

- NaClO is sodium chlorate(I) which is the active ingredient in bleach
- In both of these reactions the oxidation state of CI changes from 0 in Cl₂ to -1 in Cl⁻ and +1 in OCl⁻. CI is simultaneously oxidised and reduced. This is an example of disproportionation

<u>Topic 14a – Group 2, the Alkaline Earth Metals</u> <u>Revision Notes</u>

1) <u>Trends in Physical Properties Down Group 2 (Be-Ba)</u>

a) Atomic radius

- Increases down the group
- Extra electron shell, outer electron further from nucleus and more shielded
- Increased nuclear charge outweighed by greater shielding and distance

b) 1st ionisation energy

- Decreases down the group
- Extra electron shell, outer electron further from nucleus and more shielded
- Increased nuclear charge outweighed by greater shielding and distance

c) Melting & boiling points

- Decrease down the group
- Metallic bonding gets weaker down the group. Ionic radius of metal ions increases down group so charge density decreases. Weaker attraction between metal ions and delocalised electrons

2) <u>Trends in Chemical Properties Down Group 2 (Be-Ba)</u>

a) Reactivity with Water

- Reactivity increases down the group
- Extra electron shell, outer electrons further from nucleus and more shielded so lost more easily. Increased nuclear charge outweighed by greater shielding and distance
- Mg reacts slowly with cold water. Calcium reacts more vigorously

$Ca(s) + 2H_2O(I) \rightarrow Ca(OH)_2(aq) + H_2(g)$

• Mg reacts rapidly with steam

$$Mg(s) + H_2O(g) \rightarrow MgO(s) + H_2(g)$$

b) Solubility of Sulphates

- Solubility of group 2 sulphates decreases down the group i.e. BaSO₄ is the least soluble group 2 sulphate
- BaCl₂(aq) is used to test for sulphates. A white precipitate is produced

$$Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$$

• Barium sulphate is used for X-ray imaging and CT scans. It is most often used in imaging of the oesophagus. It is not readily absorbed by the body and absorbs X-rays more strongly than lighter atoms

c) Solubility of hydroxides

- Solubility of group 2 hydroxides increases down the group. Mg(OH)₂ is sparingly soluble i.e. only a small amount dissolves
- Group 2 hydroxides are alkaline and can be used to neutralise acids
- Calcium hydroxide, Ca(OH)₂, can be used to reduce soil acidity in agriculture
- Magnesium hydroxide, Mg(OH)₂, is found in milk of magnesia. This is used to treat indigestion by neutralising excess HCl in the stomach (the Mg(OH)₂ acts as an antacid)